Convert Erg to Millielectron volt

Simple, fast and user-friendly online tool to convert Erg to Millielectron volt ( erg to meV ) vice-versa and other Energy related units. Learn and share how to convert Erg to Millielectron volt ( erg to meV ). Click to expand short unit definition.

Please select a valid country.
Clear input
   1 Erg (erg) =    1 Millielectron volt (meV)
Erg Conversion Table
Erg(erg) to Joule (J) = 1 Joule (J)
Erg(erg) to Kilojoule (kJ) = 1 Kilojoule (kJ)
Erg(erg) to Calorie (cal) = 1 Calorie (cal)
Erg(erg) to Kilocalorie (kcal) = 1 Kilocalorie (kcal)
Erg(erg) to KilowattHour (kWh) = 1 KilowattHour (kWh)
Erg(erg) to British thermal unit (BTU) = 1 British thermal unit (BTU)
Erg(erg) to Erg (erg) = 1 Erg (erg)
Erg(erg) to Foot pound (ft-lb) = 1 Foot pound (ft-lb)
Erg(erg) to Electron volt (eV) = 1 Electron volt (eV)
Erg(erg) to Decielectron volt (deV) = 1 Decielectron volt (deV)
Erg(erg) to Centielectron volt (ceV) = 1 Centielectron volt (ceV)
Erg(erg) to Millielectron volt (meV) = 1 Millielectron volt (meV)
Erg(erg) to Microelectron volt (µeV) = 1 Microelectron volt (µeV)
Erg(erg) to Nanoelectron volt (neV) = 1 Nanoelectron volt (neV)
Erg(erg) to Picoelectron volt (peV) = 1 Picoelectron volt (peV)
Erg(erg) to Femtoelectron volt (feV) = 1 Femtoelectron volt (feV)
Erg(erg) to Attoelectron volt (aV) = 1 Attoelectron volt (aV)
Erg(erg) to Zeptoelectron volt (zeV) = 1 Zeptoelectron volt (zeV)
Erg(erg) to Yoctoelectron volt (yV) = 1 Yoctoelectron volt (yV)
Erg(erg) to Decaelectron volt (daV) = 1 Decaelectron volt (daV)
Erg(erg) to Hectoelectron volt (heV) = 1 Hectoelectron volt (heV)
Erg(erg) to Kiloelectron volt (KeV) = 1 Kiloelectron volt (KeV)
Erg(erg) to Megaelectron volt (MeV) = 1 Megaelectron volt (MeV)
Erg(erg) to Gigaelectron volt (GeV) = 1 Gigaelectron volt (GeV)
Erg(erg) to Teraelectron volt (TeV) = 1 Teraelectron volt (TeV)
Erg(erg) to Petaelectron volt (PeV) = 1 Petaelectron volt (PeV)
Erg(erg) to Exaelectron volt (EeV) = 1 Exaelectron volt (EeV)
Erg(erg) to Zettaelectron volt (zeV) = 1 Zettaelectron volt (zeV)
Erg(erg) to Yottaelectron volt (YeV) = 1 Yottaelectron volt (YeV)

What is Erg ?

An Erg is a very small unit of energy used in physics, especially in the field of mechanics and astronomy. It’s part of the centimeter-gram-second (CGS) system of units, which is an older system that is still used in some scientific contexts.

Understanding Erg in Simple Terms:
  1. What is an Erg?:

    • An erg is the amount of energy needed to apply a force of one dyne to move an object one centimeter. In simpler terms, it's a measure of how much energy it takes to move something a very small distance with a very small force.
  2. How Small is an Erg?:

    • An erg is a tiny unit of energy. To give you a sense of scale, one erg is equal to 0.0000001 (one ten-millionth) of a joule, which is the standard unit of energy in the International System of Units (SI). This makes the erg useful in situations where energy levels are extremely low, such as in atomic and subatomic processes.
  3. Example of an Erg:

    • If you imagine pushing a tiny dust particle across a table by one centimeter with a very light touch, the energy required to do that could be measured in ergs.
Key Points:
  • Tiny Unit of Energy: An erg is a very small unit of energy, much smaller than a joule.
  • Scientific Use: While it’s not commonly used in everyday life, the erg is still relevant in some areas of science, like mechanics and astronomy, where very small amounts of energy are involved.

In summary, an erg is a tiny unit of energy used mainly in scientific fields to measure very small amounts of energy. It’s part of an older system of units but still useful in certain precise scientific calculations.




What is Millielectron volt ?

A Millielectron Volt (meV) is a unit of energy that is often used in physics, particularly in fields like condensed matter physics, semiconductor physics, and quantum mechanics. Here’s a detailed and easy-to-understand definition:

What is an Electron Volt (eV)?
  • An electron volt (eV) is a small unit of energy. It represents the amount of energy gained or lost by a single electron when it moves through an electric potential difference of one volt.
  • This unit is widely used to measure the energy of very small particles like electrons, protons, and photons.
What is a Millielectron Volt (meV)?
  • A Millielectron Volt (meV) is an even smaller unit of energy, equal to one-thousandth of an electron volt (1 meV = 0.001 eV or 10310^{-3} eV).
  • The prefix "milli-" means one-thousandth, so a millielectron volt is 1/1000 of the energy of a single electron volt.
Why is it Important?
  • The millielectron volt is particularly useful when studying phenomena where the energy levels are very low, such as in the behavior of electrons in solids, low-energy interactions in quantum systems, and certain types of spectroscopy.
  • In condensed matter physics, for example, the energy difference between electronic states in a material, like in semiconductors, can often be in the range of meV. Understanding these small energy differences is crucial for the design of electronic devices and materials with specific properties.
Real-World Example:
  • In semiconductor physics, the energy gap between the valence band and the conduction band in some materials can be on the order of a few meV. This energy gap is critical in determining the material’s electrical conductivity and its behavior in electronic devices like transistors and solar cells.
  • In spectroscopy, the energy levels of molecules or atoms may differ by just a few meV, and understanding these differences is key to studying the properties of matter at the quantum level.
  • In low-temperature physics, where systems are cooled to temperatures close to absolute zero, the thermal energy of particles can be comparable to energies in the meV range, influencing how particles behave at such low temperatures.
Summary:
  • A Millielectron Volt (meV) is a unit of energy equal to one-thousandth of an electron volt, used to measure very low-energy processes in fields like condensed matter physics and quantum mechanics.
  • 1 meV = 0.001 eV.
  • This unit is important for understanding and describing small energy differences in materials, quantum systems, and low-energy interactions.

The concept of energy in meV is crucial for studying and designing materials and devices that operate at low energies, as well as for understanding the quantum properties of matter.

A Millielectron Volt (meV) is a unit of energy that is often used in physics, particularly in fields like condensed matter physics, semiconductor physics, and quantum mechanics. Here’s a detailed and easy-to-understand definition:

What is an Electron Volt (eV)?
  • An electron volt (eV) is a small unit of energy. It represents the amount of energy gained or lost by a single electron when it moves through an electric potential difference of one volt.
  • This unit is widely used to measure the energy of very small particles like electrons, protons, and photons.
What is a Millielectron Volt (meV)?
  • A Millielectron Volt (meV) is an even smaller unit of energy, equal to one-thousandth of an electron volt (1 meV = 0.001 eV or 10310^{-3} eV).
  • The prefix "milli-" means one-thousandth, so a millielectron volt is 1/1000 of the energy of a single electron volt.
Why is it Important?
  • The millielectron volt is particularly useful when studying phenomena where the energy levels are very low, such as in the behavior of electrons in solids, low-energy interactions in quantum systems, and certain types of spectroscopy.
  • In condensed matter physics, for example, the energy difference between electronic states in a material, like in semiconductors, can often be in the range of meV. Understanding these small energy differences is crucial for the design of electronic devices and materials with specific properties.
Real-World Example:
  • In semiconductor physics, the energy gap between the valence band and the conduction band in some materials can be on the order of a few meV. This energy gap is critical in determining the material’s electrical conductivity and its behavior in electronic devices like transistors and solar cells.
  • In spectroscopy, the energy levels of molecules or atoms may differ by just a few meV, and understanding these differences is key to studying the properties of matter at the quantum level.
  • In low-temperature physics, where systems are cooled to temperatures close to absolute zero, the thermal energy of particles can be comparable to energies in the meV range, influencing how particles behave at such low temperatures.
Summary:
  • A Millielectron Volt (meV) is a unit of energy equal to one-thousandth of an electron volt, used to measure very low-energy processes in fields like condensed matter physics and quantum mechanics.
  • 1 meV = 0.001 eV.
  • This unit is important for understanding and describing small energy differences in materials, quantum systems, and low-energy interactions.

The concept of energy in meV is crucial for studying and designing materials and devices that operate at low energies, as well as for understanding the quantum properties of matter.



List of Energy conversion units
Joule Kilojoule Calorie Kilocalorie KilowattHour British thermal unit Erg Foot pound Electron volt Decielectron volt Centielectron volt Millielectron volt Microelectron volt Nanoelectron volt Picoelectron volt Femtoelectron volt Attoelectron volt Zeptoelectron volt Yoctoelectron volt Decaelectron volt Hectoelectron volt Kiloelectron volt Megaelectron volt Gigaelectron volt Teraelectron volt Petaelectron volt Exaelectron volt Zettaelectron volt Yottaelectron volt