Convert Exavolt to Teravolt

Simple, fast and user-friendly online tool to convert Exavolt to Teravolt ( EV to TV ) vice-versa and other Voltage related units. Learn and share how to convert Exavolt to Teravolt ( EV to TV ). Click to expand short unit definition.

Please select a valid country.
Clear input
   1 Exavolt (EV) =    1 Teravolt (TV)

What is Exavolt ?

Exavolt (EV) is a unit of electric potential difference, or voltage, that is equal to one quintillion volts. The prefix "exa-" means one quintillion, so 1 exavolt equals 1,000,000,000,000,000,000 volts, which is written as 101810^{18} volts. Exavolts represent an extremely high voltage level, far beyond what is used in any known electrical systems, industrial applications, or even current scientific experiments. This unit is often used in theoretical physics and certain descriptions of extremely powerful natural and cosmic events.

Detailed Explanation:
  1. What is an Exavolt?
    An exavolt measures an extremely high electric potential difference, representing a tremendous amount of electrical force or energy. This level of voltage is almost unimaginable in practical terms and is not encountered in everyday life or even in advanced scientific labs. Exavolts are usually discussed in the context of theoretical physics, cosmic phenomena, or hypothetical future technologies.

  2. Relationship to Volt:

    • 1 Exavolt (EV) = 1,000,000,000,000,000,000 Volts (10^18 volts)
    • For example, 2 exavolts (2 EV) would be equivalent to 2,000,000,000,000,000,000 volts.
  3. Usage in Real-World and Theoretical Applications:

    • Cosmic Phenomena: Exavolt-level energies might be found in extreme cosmic events. For instance, certain high-energy cosmic rays, which are particles traveling through space at nearly the speed of light, could theoretically carry energies approaching the exavolt range. These particles originate from powerful cosmic events such as supernovae, black hole mergers, or active galactic nuclei, where the forces at play are beyond anything we can replicate on Earth.
    • Theoretical Physics: In the realm of theoretical physics, exavolts might be referenced when discussing conditions just after the Big Bang or in other extreme scenarios where the fundamental laws of physics are put to the test. Such high voltages could hypothetically exist in conditions where space-time itself is being stretched, compressed, or manipulated, offering insights into the nature of the universe.
    • Speculative Future Technologies: Exavolts are sometimes mentioned in the context of futuristic technologies in science fiction, such as advanced energy generation systems, interstellar travel methods, or weapons capable of altering large-scale structures of space-time. These applications remain purely speculative at this point, as no current technology can generate or manage exavolt-level voltages.
  4. Comparison to Everyday Voltage Levels:
    To put an exavolt into perspective, consider that a standard household electrical outlet provides around 120 volts (in North America) or 230 volts (in many other countries). An exavolt is one quintillion volts, making it approximately 4.3 quadrillion times higher than the voltage from a household outlet. Even the highest voltage transmission lines, which might carry up to 1 megavolt (1 million volts), are still a billion billion (a quintillion) times less than an exavolt.

  5. Safety Considerations:
    If exavolt-level voltages were to be encountered, they would pose unimaginable safety risks. Handling such high voltages would require revolutionary advances in materials science, safety measures, and energy control techniques. Exavolt energy levels could potentially cause massive destruction and pose catastrophic risks, making them far beyond the current scope of human engineering and technology.

  6. Example to Illustrate:
    Imagine a futuristic scenario where scientists have developed a machine to study the fabric of space-time itself. To manipulate and observe the effects of gravity and other forces at a cosmic scale, they might need to generate electric fields with voltages in the exavolt range. This level of energy could create conditions similar to those that existed just moments after the Big Bang, allowing them to test theories about the universe's origin and its fundamental structure.

Summary:

An exavolt is a unit of measurement for electric potential difference, equal to one quintillion volts. It represents an incredibly high voltage level, used mainly in theoretical physics and descriptions of extreme cosmic events. Exavolts indicate a massive amount of electrical energy, far exceeding what is currently used or encountered in practical applications, everyday electrical systems, or even the most advanced scientific experiments. Understanding exavolts is crucial for exploring the most extreme aspects of physics and the universe, potentially leading to groundbreaking discoveries in energy, space, and time.




What is Teravolt ?

Teravolt (TV) is a unit of electric potential difference, or voltage, that is equal to one trillion volts. The prefix "tera-" means one trillion, so 1 teravolt equals 1,000,000,000,000 volts, which is written as 101210^{12} volts. Teravolts represent incredibly high voltage levels, far beyond what is used in everyday electrical systems or even most industrial applications. This measurement is typically found in highly specialized scientific contexts and certain natural phenomena.

Detailed Explanation:
  1. What is a Teravolt?
    A teravolt measures an extraordinarily high electric potential difference. This level of voltage is rarely encountered in everyday life or even most industrial settings because it represents a vast amount of electrical force. Teravolt levels are primarily discussed in theoretical physics, certain cutting-edge scientific experiments, and when describing extreme natural phenomena such as certain types of cosmic events.

  2. Relationship to Volt:

    • 1 Teravolt (TV) = 1,000,000,000,000 Volts (10^12 volts)
    • For example, 2 teravolts (2 TV) would be equivalent to 2,000,000,000,000 volts.
  3. Usage in Real-World Applications:

    • High-Energy Particle Physics: In theoretical and experimental physics, teravolts are sometimes used to describe the energy levels required to accelerate particles to extreme speeds. Although current particle accelerators, like the Large Hadron Collider (LHC), operate at voltages in the gigavolt range, future accelerators or theoretical setups might achieve teravolt levels to explore deeper aspects of particle physics and the fundamental forces of nature.
    • Cosmic Phenomena: Certain cosmic rays, which are high-energy particles that originate from outer space and strike the Earth's atmosphere, can carry energy levels equivalent to several teravolts. These high-energy events help scientists understand more about the universe, including the behavior of particles under extreme conditions that are difficult to replicate on Earth.
    • Thunderstorms and Natural Discharges: While lightning typically involves voltages in the megavolt and gigavolt range, some theorists speculate that certain rare types of discharges in the atmosphere or in space (such as gamma-ray bursts and certain electromagnetic pulses) might momentarily reach teravolt levels.
    • Theoretical Applications: In the realm of science fiction and speculative science, teravolts are often used to describe futuristic energy sources, advanced propulsion systems, or hypothetical scenarios involving large-scale power manipulation, such as the generation of artificial black holes or wormholes.
  4. Comparison to Everyday Voltage Levels:
    To put a teravolt into perspective, consider that a typical household electrical outlet provides around 120 volts (in North America) or 230 volts (in many other countries). A teravolt is one trillion volts, making it about 4.3 billion times higher than the voltage from a household outlet. Even the highest voltage transmission lines, which might carry 1 megavolt (1 million volts), are still a million times less than a teravolt.

  5. Safety Considerations:
    Voltages in the teravolt range are immensely powerful and pose severe safety risks. While practical applications of teravolts are not common due to the extreme energy involved, handling such high voltages (even theoretically) would require advanced technology, exceptional safety protocols, and materials capable of withstanding intense electrical fields. Uncontrolled exposure to teravolt-level energy would likely result in catastrophic damage to equipment and could be fatal to humans.

  6. Example to Illustrate:
    Imagine a future particle accelerator designed to explore physics beyond the Standard Model, pushing the boundaries of what we know about the universe. To do this, scientists might design a machine capable of reaching teravolt energy levels to accelerate particles to nearly the speed of light. The intense electric fields generated in this process would be necessary to investigate phenomena like dark matter or the properties of space-time itself.

Summary:

A teravolt is a unit of measurement for electric potential difference, equal to one trillion volts. It is used primarily in theoretical physics, the study of cosmic events, and highly speculative scientific research. Teravolts represent an incredibly high level of electrical energy, far beyond what is encountered in everyday electrical systems. Understanding teravolts is crucial for exploring extreme physical phenomena, both in theoretical models and in understanding the universe's most powerful natural events.



List of Voltage conversion units
Volt Microvolt Millivolt Kilovolt Megavolt Gigavolt Teravolt Petavolt Exavolt