Convert Degree to Degree

Simple, fast and user-friendly online tool to convert Degree to Degree ( ° to ° ) vice-versa and other Angle related units. Learn and share how to convert Degree to Degree ( ° to ° ). Click to expand short unit definition.

Please select a valid country.
Clear input
   Degree (°) =    Degree (°)

What is Degree ?

A Degree is a unit of measurement used to describe the size of an angle. It’s one of the most common ways to measure angles and is widely used in everyday life, mathematics, engineering, and many other fields.

Understanding a Degree

Imagine a circle. A full circle is divided into 360 equal parts. Each one of these parts is called a degree and is denoted by the symbol °. So, if you were to start at one point on the circle and go all the way around back to that point, you would have turned through 360 degrees (360°).

Visualizing Degrees
  • 90°: This is called a right angle and looks like the corner of a square or rectangle. It represents one-quarter of a full circle.
  • 180°: This is called a straight angle and forms a straight line. It’s half of a full circle.
  • 360°: This is a full angle or a complete circle. It’s like doing a full turn and coming back to your starting point.
Key Types of Angles Measured in Degrees
  • Acute Angle: Less than 90°, like the sharp angles in a triangle.
  • Right Angle: Exactly 90°, forming a perfect “L” shape.
  • Obtuse Angle: More than 90° but less than 180°, like the wide angles you might see in an open door.
  • Straight Angle: Exactly 180°, forming a straight line.
  • Reflex Angle: More than 180° but less than 360°, like the angle you get when you keep turning past a straight line.
Why 360 Degrees?

The number 360 is used because it has many divisors, making it easy to work with fractions of a circle. For example:

  • 360° can be divided by 2 (180°), by 3 (120°), by 4 (90°), by 6 (60°), and so on.
  • This makes it convenient for dividing a circle into equal parts, such as in geometric constructions or for clock faces.
Tools for Measuring Degrees
  • Protractor: A tool marked in degrees from 0° to 180°, used to measure or draw angles.
  • Compass: Used to draw circles and can help measure degrees when combined with a protractor.
  • Scientific Calculator: Often used in math and science to calculate angles in degrees, especially when converting between other units like radians.
Everyday Examples of Degrees
  • Clock: The hour hand moves 30° for every hour (since 360°/12 hours = 30°).
  • Navigation: Directions are often given in degrees. For example, North is 0°, East is 90°, South is 180°, and West is 270°.
Summary
  • A degree is a unit of measurement for angles, with a full circle equal to 360°.
  • Degrees are easy to understand and widely used in various fields.
  • They help describe how much something turns or rotates, whether it’s a simple angle in geometry or the direction of a compass.

Understanding degrees is fundamental to geometry and helps us describe the world around us in terms of direction, rotation, and shapes.




List of Angle conversion units
Degree Radian Milliradian Microradian Gradian Revolution Arc minute Arc second Milliarcsecond Microarcsecond