Convert Degree to Gradian

Simple, fast and user-friendly online tool to convert Degree to Gradian ( ° to grad ) vice-versa and other Angle related units. Learn and share how to convert Degree to Gradian ( ° to grad ). Click to expand short unit definition.

Please select a valid country.
Clear input
   Degree (°) =    Gradian (grad)

What is Degree ?

A Degree is a unit of measurement used to describe the size of an angle. It’s one of the most common ways to measure angles and is widely used in everyday life, mathematics, engineering, and many other fields.

Understanding a Degree

Imagine a circle. A full circle is divided into 360 equal parts. Each one of these parts is called a degree and is denoted by the symbol °. So, if you were to start at one point on the circle and go all the way around back to that point, you would have turned through 360 degrees (360°).

Visualizing Degrees
  • 90°: This is called a right angle and looks like the corner of a square or rectangle. It represents one-quarter of a full circle.
  • 180°: This is called a straight angle and forms a straight line. It’s half of a full circle.
  • 360°: This is a full angle or a complete circle. It’s like doing a full turn and coming back to your starting point.
Key Types of Angles Measured in Degrees
  • Acute Angle: Less than 90°, like the sharp angles in a triangle.
  • Right Angle: Exactly 90°, forming a perfect “L” shape.
  • Obtuse Angle: More than 90° but less than 180°, like the wide angles you might see in an open door.
  • Straight Angle: Exactly 180°, forming a straight line.
  • Reflex Angle: More than 180° but less than 360°, like the angle you get when you keep turning past a straight line.
Why 360 Degrees?

The number 360 is used because it has many divisors, making it easy to work with fractions of a circle. For example:

  • 360° can be divided by 2 (180°), by 3 (120°), by 4 (90°), by 6 (60°), and so on.
  • This makes it convenient for dividing a circle into equal parts, such as in geometric constructions or for clock faces.
Tools for Measuring Degrees
  • Protractor: A tool marked in degrees from 0° to 180°, used to measure or draw angles.
  • Compass: Used to draw circles and can help measure degrees when combined with a protractor.
  • Scientific Calculator: Often used in math and science to calculate angles in degrees, especially when converting between other units like radians.
Everyday Examples of Degrees
  • Clock: The hour hand moves 30° for every hour (since 360°/12 hours = 30°).
  • Navigation: Directions are often given in degrees. For example, North is 0°, East is 90°, South is 180°, and West is 270°.
Summary
  • A degree is a unit of measurement for angles, with a full circle equal to 360°.
  • Degrees are easy to understand and widely used in various fields.
  • They help describe how much something turns or rotates, whether it’s a simple angle in geometry or the direction of a compass.

Understanding degrees is fundamental to geometry and helps us describe the world around us in terms of direction, rotation, and shapes.




What is Gradian ?

A Gradian (also known as gon or grade) is a unit of angle measurement used in some fields like surveying, engineering, and cartography. It’s an alternative to degrees and radians for measuring angles, with a focus on dividing angles into even parts for easier calculation.

Understanding a Gradian

A gradian is defined by dividing a full circle into 400 equal parts. Each of these parts is one gradian. This means:

  • A full circle equals 400 gradians.
  • A right angle (which is one-quarter of a circle) is 100 gradians.
Key Facts About Gradians
  • Relation to Degrees and Radians:

    • 1 gradian is equal to 0.9 degrees.
    • 1 gradian is also approximately equal to 0.0157 radians.
    • Since a full circle is 360 degrees, and a full circle is 400 gradians, 1 degree equals 10/9 gradians (or approximately 1.111 gradians).
    • Similarly, 1 radian is about 63.66 gradians.
  • Common Gradian Values:

    • 0 grad: Starting point, like 0° or 0 radians.
    • 100 grad: Equivalent to 90° or π/2 radians (a right angle).
    • 200 grad: Equivalent to 180° or π radians (a straight angle).
    • 300 grad: Equivalent to 270° or 3π/2 radians.
    • 400 grad: Equivalent to 360° or 2π radians (a full circle).
Why Use Gradians?

Gradians are particularly useful in applications where angles are frequently divided into quarters or decimals. For example:

  • Surveying: When surveyors measure land or set out construction projects, using gradians allows for simpler calculations when dealing with right angles or dividing an area into equal parts.
  • Engineering: Gradians can simplify the calculations involving angles that are multiples of 10, which are common in engineering designs.
Visualizing Gradians

Imagine a circle divided into four equal parts:

  • In degrees, each part is 90°.
  • In gradians, each part is 100 grad. This division makes it straightforward to work with right angles, which are common in many practical applications.
Practical Example

If an engineer needs to design a road that turns exactly 45 degrees, they can quickly convert this to 50 gradians (since 45° is half of 90°, and half of 100 grad is 50 grad). This ease of division is one of the reasons gradians are sometimes preferred in technical fields.

Summary
  • A gradian is a unit of angle measurement where a full circle is divided into 400 equal parts.
  • 1 gradian equals 0.9 degrees or approximately 0.0157 radians.
  • Gradians are especially useful in fields like surveying and engineering, where angles often need to be divided into even parts.
  • 100 gradians make a right angle, and 400 gradians make a full circle.

Understanding gradians can be beneficial in certain technical fields where simplicity and ease of calculation are important, especially when working with angles that are frequently divided into equal parts.



List of Angle conversion units
Degree Radian Milliradian Microradian Gradian Revolution Arc minute Arc second Milliarcsecond Microarcsecond